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Performance Portable 
Abstractions Breakout!

•  Five questions:!

•  What is performance portability? Isn’t the real question, what are we targeting for 
our codes; what is ‘good enough’? What have we shown is possible?!

•  At what level(s) do we want abstractions? High level such as DSLs and 
architecture optimized algorithms/libraries?  Low level data and task 
parallel programming models? What are the successes and failures we have 
seen so far?!

•  What are the tradeoffs of different approaches? Directives, Attributes, Language 
extensions, DSLs? Any other categories? What have been the successes? What 
challenges remain?!

•  What do we need from: Vendors? (Open)Community? What have we been happy 
with and what do we see as critical gaps?!

•  What do we want to see supported by our programs? ASC, ASCR, ECP, etc.!



What is performance 
portability?!

•  Using John Pennycook's definition: !

•  An application is ‘performance portable’ if it achieves a 
consistent level of performance across platforms (relative 
to the best known implementation on each platform).!

•  With some additional qualifiers:!

•  X% of the code must be shared between implementations 
(e.g. 95%)!

•  The implementation must exploit available architecture 
features!



At what level do we want our 
abstractions?!

•  Application developers can use library-level abstractions!

•  Leave the problem of performance to the library developer!

•  One library per architecture is no big deal!

•  We need to build these high-performance libraries!

•  Developers want abstractions as low-level as possible, while remaining portable!

•  This could be inside the libraries used by applications!

•  Legacy applications require incremental adoption!

•  Fortran cannot be ignored, but what can we do?!

•  Pre-processing, RAJA/Kokkos interop with Fortran, f2c 



What are the tradeoffs of 
different approaches?!

•  DSLs provide opportunity for kernel fusion, but inhibit incremental 
adoption.!

•  Success story: IRP DSL generating optimized Fortran from Python!

•  RAJA/Kokkos great for rapidly prototyping optimizations!

•  Abstractions using cutting-edge language features at the mercy of 
compilers!

•  Push to add parallelism to language standards makes them more 
bloated!

•  This makes more work for compiler vendors !



What do we need from 
vendors and the community?!

•  Focus on compilers!

•  Support standards!

•  Optimize code even through our chosen abstractions!

•  Tools that support our chosen abstractions (e.g. debug 
information)!

•  Better build systems!

•  Difficult to combine wrappers, preprocessors and 
compilers!



What do we want to see 
supported by the programs?!

•  Explicit support targeting system software (c.f. 
compiler research)!

•  Evangelization experts who can spread expertise, 
visit application teams to share knowledge!



To Summarize!
•  Performance portable: substantial amount of shared 

code,  exploits all target architecture, achieves 
consistent fraction of best possible performance!

•  Low-level abstractions for computer scientists!

•  Library-level abstractions for application developers if 
possible!

•  Improved compilers and tools!

•  Program support for abstraction layer experts!




